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Abstract

Distribution-free tolerance bounds are obtained for the life

time of an r-out-of-k system of unlike components. It is assumed

that the life time distributions of the k. components belong to a

stochastically ordered family of distributions. Two criteria are

used to determine the tolerance bounds. These criteria are exten-

sions of the criteria used in a single population literature.
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1. Introduction

Reliability studies of series, parallel or complex-systems

based on component test data is of considerable interest and prac-

tical significance. Sometimes it may be much more economical to

test components of a system seperately rather than testing the whole

system or it may be that the reliability-testing of the whole system

cannot be done without destroying the system. For such situations,

working with.component test data, a number of authors have consid-

ered the problem of lower confidence bounds for a series or parallel

system (see Mann (1974), Mann and Grubbs (1974) and the references

therein.) The problem discussed in this paper is different in three

respects from the confidence bound problem. Instead of confidence

bounds for the reliability of a system for a specified time, we con-

sider tolerance bounds for the life time distribution of the system.

Usually lower tolerance bounds are of much interest. These toler-

ance bounds can then be used to obtain confidence bounds for quan-

tiles of the life time distribution of the system (see Conover (1971)

p. 118). Since a series system and a parallel system are special

cases of an m-out-of-k system (see Barlow and Proschan (1975)), we

consider the tolerance bounds for an m-out-of-k system. Such a

system is of interest by itself also, as a redundant system. The

system then has k components but needs only m to function properly.

Lastly the assumption of exponential life time distributions for

the components is replaced by a much weaker assumption that the life

time distributions of the components belong to a stochastically

ordered family of sitributions, that is there is no crossover between

any two distribution functions. This assumption of "no crossover"
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is satisfied by many families of distributions. In particular, ie

assumption holds if the lifetime distributions for the components

are all exponential with different scale parameters or if these life

time distributions are Weibull with same shape parameter and dif-

ferent scale parameters or same scale parameter and different shape

parameters.

Let T1 ... ,Tk denote the lifetimes of the k components of an

m-out-of-k system with continuous distribution functions F ,...,F

respectively. Then the lifetime of the system is T(k-m+l), the

(k-m+l)st smallest of the T.'s. Let H ik denote the distribution

function of T(km+l)* We assume that the Fi's do not have any

crossovers, i.e., there is a permutation of (l,2,...,k), let it be

denoted by ((1),...,(k)), such that F(1)(x) < ... < F(k) (x) for

all x. A procedure for the distribution-free tolerance bounds for

H Mk is described below.

Procedure. Let Ti r n denote the waiting time for the rth failure
1,r~

among n prototypes of the ith component, put on test simultaneously,

all with distribution function F. i1l,...,k. Let the waiting times

from the k seperate experiments be ordered as

T< TT(1);r,n . (k);r,n"

For r < s, i < j (with at least one strict inequality) we define a

tolerance interval

i j  (T(i) ;r,n ,T(j) ;s,n). (1.1)

Adopting the convention that To);r,n 0 and T(kel);sfl *- for

any r and s, we can write a lower tolerance interval and an upper

tolerance interval as
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Ii,k I  - (T i) (1.2)

Soj " (0, T j);s,n). (1.3)

The motivation for considering the above procedure is the

following. Suppose for some A, O<<I, the A-quantiles for the life

times of the k components were known as ql,... qk, and we decide to

use q(k-m~l), the (k-m+l)st smallest of these quantiles, for the

lower tolerance bound for Hm,k . Then the probability that the life

time of an m-out-of-k system will exceed q~k-m~l) is 1 - H m,k(q ckml)).

It can be shown that an upper bound for Hm,k(q km+l) )

is G(F(M) (qck(M+,)); 1, m) a G(X;l,m) = l-(l-,) m  (G is defined later).

Thus if A < 1 - 8 /m where 8 is preassigned, the probability that

the life cime of an m-out-of-k system will exceed q(k-m+l) is at

least 8. Since in practice we do not know qi's, they are estimated

by Ti;r,n and then Tck.m l);r, n estimates q k-ml)"

We shall use two criteria for the determination of n,r,s,i and j

for given m and k. These criteria are extensions of the criteria

used in the single population literature (see Guttman (1970)) and

were used by Saxena (1976). Let PCIi~ I H m,k) denote the probabil-

ity coverage of the tolerance interval I i j by Hm, k . Then

P(I.i~ I H n,k) is a random variable whose distribution depends on

F, where F - (F1 ,...,Fk,. Let Q be the set of all k-tuples F in
1 k)

which no two F.'s have any cross overs.
which no two Ii
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Criterion A. An interval I. is a $-expectation tolerance inter-

val for Hink if

inf EF(P(I I Hm  ) > 8 (1.4)
-~ i ,j ,k ) "

Criterion B. An interval Ii, j is a 8-content tolerance interval

for H with confidence level y ifil m,k

inf PF(P(I i j Hm,k) > 8) > Y. (.)

Note that from (1.2) and (1.5) we can obtain also a lower confi-

dence bound for the (1-0) quantile of 1im,k. It is T(i) ;r ,n with

confidence coefficient at least y, if i,r,n are chosen to satisfy

(1.5).

In the sequel we use the following notation: Let g(x;rn)

given by

g(x;r,n) r(n+l) x (-x) r-1, <x<r(r)r(n-r+l) x (-~ "  ,0<x<I

denote the density function of a beta distribution with parameters

r and n-r+l and let the corresponding distribution function be

G(x;r,n). Then G(G(x;r,n);i,j) is the cdf of the ith order statis-

tic in a sample of size j from a beta distribution with parameters

r and n-r+1.

Lower bounds for the infima in (1.4) and (1.5) are obtained

in Theorems 1 and 2 and their corollaries in the Appendix. Using

those bounds the choices for i,j,r,s and n for the intervals (1.1)-

(1.3) are discussed below in Section 2.

-
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2. Choices for i, j, r and s.

Whether we want a tolerance interval of a given expected

coverage (Criterion A) or a tolerance interval whose probability

coverage exceeds a preassigned a (Criterion B), clearly it is desir-

able to have the intervals as "short" as possible. This is done by

taking i and r as large as possible and j and s as small as possible.

In view of the restrictions under which the bounds have been obtained

in Theorems 1 and 2 in the Appendix we take i=j=k-m+l. Then the

intervals are

Ik-m+l,k-m+l (T(k-m+l);r,n' T(k-m+l);s,n ) '  (2.1)

Ik-m+l,k+l = (T(k-m+l);r,n' ) '  (2.2)

io,k-m+l = (0,T(k-m+l)) (2.3)

For example, to get a lower tolerance bound on a 2-out-of-4 system

we first find the rth failure times among n prototypes of each of

the four components and then take the third smallest of these four

failure times. In the rest of this section we consider the choices

for r and s for the two criteria seperately.

Criterion A. Let Z(i),J(mn) denote the ith order statistic in a

sample of size j from a population with distribution function

G(x;m,n) . Then it is easy to see that the lower bounds for expected

coverages of intervals (2.1)-(2.3), from results in the Appendix,

can be expressed in terms of the moments of Z(1 ) ,(mn) in the

* ~ --.
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following manner:
P I -m+l (s n + m n r l )

inf E;P(Ik.m+l k-m+l I Hm, k ) > EZ( 1 ), m (s(n+EZl),k-m+l(n-rln)

(2.4)

inf EFP(I1) > EZ (n-r+ln) (2.)F (k-m+l,k+ - (I),k-m+l

inf EP(I > k-m+l (sn)(2.6)FI ~ ,k - EZ(1),m "

Next we have to decide the values for r and s so that the right

hand side quantities in the above inequalities are larger than 8.

For this we observe that G(x;r,n) < G(x;r',n) if r > r'. Hence from

Lemma 2.2 of Saxena (1976) it follows that any moment of Z( (m,n) ,

for fixed j and n, increases with m. So the lower bounds in (2.5)

and (2.6) decrease when r is increased and s is decreased. Conse-

quently for the one sided interval, the optimum values for r and s

are respectively the largest and smallest values which bring the

lower bounds (2.5) and (2.6) as close as possible to the preassigned

a value. For the two sided tolerance interval it is an extremely

difficult problem to choose the largest r and the smallest s such

that the lower bound (2.4) stays above $ and at the same time the

interval is as "short" (in the sense of expected length) as possible.

To overcome this difficulty we restrict the choices of r and s to

those values which make the expected coverage of the two tails out-

side the interval as close to (1-8)/2 as possible. This requires

that we choose the smalelst s and the largest r so that

EZk-m+l (s,n) > (1+0)/2 and EZk-m+l (n-r+l,n) > (1+0)/2. (2.7)
(1 (,m n(1) ,m
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The moments of Z(1 ) ,j (mn) needed for solving for r and s have to

be evaluated by numerical integration. But this numerical inte-

gration can be avoided,since for all practical purposes,a lower

bound on these moments, given in the lemma below, works as well as

the exact value. A few exact values and lower bounds tabulated in

Table 1, indicate a difference of less than one per cent.

Lemma 2.1. For any i and j
n! (l+r-l). ! n, (i+r-l1

> EZ (rn) >

-_.L (n(2i+r-l (n!(i+r-l)!) 2)({C -'l)!(n+2 ) - (r-l)!(n+iT)

(2.8)

Proof. Let g.(z) denote the pdf of Z()J(rn). Then for
j > jl,gj(z)/gj,(z) is a decreasing function of z and therefore

EZt =(rn) EZt r n!(i+r-l)r, - (I) ,I ( r n )  (r- 1) ! (n £)

For the lower bound the proof is based on the approach of Sugiura

(1962). The steps of the proof are similar to David (1970), p.54,

and are omitted.

Large n: If r/n . as n *, it is seen that both the upper and the

lower bounds for EZtl),j(r,n) in (2.8) coverge to X1. So for large n,

even an approximation for the lower bound suffices as an approxima-

tion for the exact value, i.e.,



EZ (rn,), (1) ,j '

* iXi" 1 [- (j -l)(X (-X)/n(2j-lI)) (i-I- iX-A)/2n1

(2.9)

Criterion B. From results in the Appendix, the lower bounds for the

confidence levels for the 8-content tolerance intervals can be

written as

inf P F(P(Ik m+l,k m+l H mk)  > 8)

>[G(l-((I+$)/2) ;r,n)] + [l-G(((l+$)/2) /(k-m+l);s ,n)] 1m

(2.10)

inf PF(P( 1 0,k-m+1 I Hmk) > 8) >_IG(Bl/(k-m+l) ;s,n)] 
m

(2.11)

inf PF(p(Ik-m+l,k~l I Hm k ) 8) [G(1-81/m ;r,n)] k -m l

(2.12)

Since G(x;r,n) is a nonincreasing function of r, the lower bounds

in (2.11) and (2.12) are decreased when s is decreased and r is

increased. Thus the optimum values for r and s are the largest and

the smallest values respectively which bring the bounds (2.11) and

(2.12) as close to y as possible. For the two sided interval we

i. consider those values of r and s optimum which give a probability

of, at most (l-y)/2, for the probability content of each tail out-

side the interval to be at most (1-8)/2. This is done by choosing

the smallest s and the largest.r so that
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" G(l+)2)1/ (k-m+l) 1M

.( )) k l;s,n)<l-(l+y)/2)1/m ,  (2.13)

and

G(l-((l+a)/2)I/m;r,n) > ((l+y)/ 2)1/(k-m+
l ) (2.14)

Large n: When n is sufficiently large the normal approximation

O((-r+l+nx)/(nx(l-x))"2 ) for G(x;r,n) can be used for all three

intervals.

3. Numerical Examples

We consider numerical examples for criteria A and B for the

lower tolerance intervals.

Criterion A: Consider a 2-out-of-4 system (m=2,k-4). Let B=.8,

n=40. For a lower tolerance interval choose the largest r so that

EZ2l),3 (4l-r,40)-.8. From the table we find that EZ12  (38,40)
(1),

=.7971. Thus a .8-expectation lower tolerance interval is

(T (3);5,40,). The approximation (2.9) gives the value .8000 for

EZ 1),3(38,40).

Criterion B. Consider a 2-out-of-4 system (m=2,k-4). Let 8-.8,

y-.8, n-40. Then using (2.12) and the incomplete beta function

tables by Pearson (1968) we see that the largest value of r for which

1/inG(1- l/;r,n) > y

is r=2. Thus the .8-content lower tolerance interval with confi-

dence level .8 is (T(3 );2 ,4 01,).

...........
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4. Concluding Remarks

The goal of this paper is to obtain tolerance bounds for the

lifetime distribution of an m-out-of-k system based on component

test data. The procedure discussed is not recommended when it is

practically feasible to test a system as a whole. But situations

where it is not possible to test a whole system are numerous and

statistical procedures based on component test data have been exten-

sively discussed by various authors cited in section 1. In most of

the previous works the emphasis is on exponential distributions and

confidence bounds for reliability to an assigned time. Tolerance

bounds have not been discussed in previous works. The only assump-

tion made about the lifetime distributions of the components is that

they are stochastically ordered. This enables us to work wit% order

statistics and obtain distribution-free bounds.

It should be noted that while determining r and s for the bounds,

the extreme values for r and s are 1 and n respectively. If even

with such extreme choices for r and s it is not possible to meet the

specifications, then a larger sample size has to be used.
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6. Appendix

Theorem b.1 For the tolerance 1i j given by (1.1), if

i < k-m~l < j, then

1-.W



- G(y;k-im4Zki+l)d(G(G(y;rn);ii)I.

0 (6.1)

Proof. From (1.1) we have

nf EFP(Iij)JHm k) -_ F mk (j)sn) E F H k)(T- )]

EFPC ~y; kHmk)-=EH,(T i)d[Gm(i;rn i]

= E1-E 2  say . (6.2)

A lower bound on the infimum of (6.2) over S2 is obtained by replac-

ing E1 by a lower bound and E2 by an upper bound. Corresponding to

a vector F e a define

F =( , F ,... 1) (6.3)

and

Fo(i) = (0,...,0, F (i) ,...,F M (6.4)

Then using Lemma 2.1 of Saxena (1976) we have

Iim,kCt) - PF(TCk-m I) < t) P(FCk.I) ( T k < t)m~k~) (km~l)FO~kj~l)(k-m.1)

= G(F(k-j+l) ( t);k - m+l , j )

Then

Elm EFHm,k(T(j);sn) > EFG(F k-j+l) ( TCj);s,n);k - m+l , j )

> EF I G(F (T );k-m+l j)
S (k-j+l '
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Under F1 (k-jel), the cdf of T (j;sn is

G(G(F (k-j,) (.);s~n);l~k-i~l). Trherefore

El i G(y;k-m+1,j)d[G(G(y;s,n);1,k-j+1)]. (6.5)

Working similarly for an upper bound for E2 we have

E-) J G(y;k-i-m+2,k-i+1)d[G(G(y;r~n);ii)]. (6.6)

Now the theorem is proved using bounds (6.5) and (6.6) in (6.2).

Corollary 6.1 For the one sided tolerance intervals I i k~ and

I0jgiven by (1.2) and (1.3), if i < k-m+l < j, then

nF F(ik~l H Hmk) ~ - 1 G(y;k-i-m+2,k-i+l)d[G(G(y;r,n);i,i)],
10 (6.7)

inf E FP(I I~ H mk) .~JG(y;k-m~l,i)d[G(G(y;s,n);l~k-i~l)]. (6.8)

The proofs are omitted.

Theorem 6.2 For the tolerance interval Iijgiven by (1.1), if

i < k-m+l < j, then

in P F(P(Iij H Hmk)>

>G(G(G
1 ((1-8)/2;k-i-m+2,k-i~l);r,n);i,i)

-G(G(G-
1((1+8)/2;k-m+l,j);s,n);l,k-j~l). (6.9)

Proof. We can write

P F (PIii H -~k B) P(mkTj;~)-H(~);~)

PFHm k ((i)r,n) -0)2

FHm k ((j);s,n -(+)2

*Pl((l-8)/Z) -P 2((l.8)/2, say. (6.10)
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Now we get a lower bound for the infimum over 2 by replacing P()

by a lower bound and P 2(-) by an upper bound. From lemma 2.1 of

Saxena (1976) we have

*1=G(F (k-i+l) (t);k-i-m+2,k-i+l).

Then

P PF(F(k-j+l) (T (j);rn)<~a), (6.11)

where a -G -1((1-0)/2;k-i-m+2,k-i+l). From theorem 2.2 (b) of

Saxena (1976)

*inf P F (F(k-i.1) (T ()rn)<a) = G(G(a;r,n);i,i).
ai;~ -

* Hence from (6.11)

inf P1I ((1-0)/2)> G(G(a;r,n) ;i,i) . (6.12)

Similarly we can show that

sup P 2((1*8))/2).G(G(b;s,n);l,k-j.1), (6.13)

where b =G((l+8)/2;k-m+1,k-j~l). Now using (6.12) and (6.13)

in (6.9), the theorem is proved.

*Corollary 6.2. For the one sided tolerance intervals I~ ik~l and

* 'O,,j given by (1.2) and (1.3), if i < k-m+. < j, then

inf P F (p('i,k+l I Hm k) >8). G(GCG-1((l-8) ;k-i-m+2,k-i+l) ;r,n) ;i~i),
- (6.14)

inf P F(P 1O~j I % k).f.8)1.lG(G(G (Bk-m~1,j)s,n) ;1,kjl). (6.1S)

The proofs are omitted.



Table I.

Expected values of Z (r,n) and the lower bounds: First entry is the exact value ofExpcte vauesof (1) ,j

EZ (r,n) and the second entry is the lower bound given by (2.8); ** in the second
(1) ,j

entry indicate that the lower bound (2.8) is equal to the exact value.

n 10 20 30 40

r: 10 9 20 19 18 17 30 29 28 27 40 39 38 37 36

(i,j)

(1,1) .9091 .8182 .9524 .9048 .8571 .8095 .9678 .9355 .9032 .8710 .9756 .9512 .9268 .9024 .8780
:0 ** **o0 0 , * , 0* 00 ** *0 *0 o.00 *0 ** 0*

(1,2) .8658 .7567 .9291 .8708 .8158 .7627 .9519 .9121 .8745 .8380 .9636 .9334 .9048 .8771 .8499

.8611 .7539 .9262 .8686 .8141 .7612 .9417 .9104 .8731 .8386 .9619 .9320 .9036 .8760 .8489

(2,1) .8333 .6818 .9091 .8225 .7403 .6623 .9375 .8770 .8185 .7621 .9524 .9059 .8606 .8165 .773!
i*0 ** 0* 0 0 * 0 0* ** 00 00* 0 *0 *0 .0 *0

(1,3) .8379 .7207 .9139 .8504 .7921 .7366 .9404 .8979 .8578 .8194 .9556 .9225 .8919 .8626 .8342

.8348 .7186 .9118 .8488 .7904 .7346 .9398 .8966 .8565 .8180 .9543 .9214 .8909 .8615 .8329

(2,2) .7576 .5844 .8658 .7623 .6708 .5878 .9073 .8338 .7673 .7055 .9292 .8723 .8203 .7713 .7247

.7520 .5824 .8612 .7596 .6689 .5865 .9036 .8314 .7655 .7040 .9262 .8702 .8185 .7697 .7233

(3,1) .7692 .5769 .8696 .7510 .6437 .5471 .9091 .8239 .7441 .6697 .9032 .8638 .8006 .7405 .6836
0*00 00 *0 * 0 * Q ,00 *0 00 0 * 00 * 0 O 00 0* 00

(1,4) .8174 .6958 .9026 .8359 .7757 .7189 .9336 .8878 .8461 .8066 .9496 .9147 .8829 .8527 .8234

.8150 .6919 .9009 .8338 .7725 .7146 .9323 .8862 .8440 .8038 .9486 .9135 .8813 .8505 .8208

(2,3) .7102 .5306 .8378 .7271 .6323 .5482 .8875 .8082 .7383 .6744 .9139 .8522 .7971 .7460 .6980

.7073 .5278 .8349 .7250 .6298 .5448 .8850 .8063 .7363 .6720 .9118 .8506 .7954 .7441 .6957

(3,2) .6689 .4593 .8089 .6706 .5555 .4575 .8658 .7641 .6756 .5965 .8966 .8164 .7450 .6798 .6197

.6639 .4583 .8035 .6680 .5541 .4564 .8612 .7613 .6737 .5921 .8926 .8138 .7431 .6782 .6183

(4,1) .7143 .4945 .8333 .6884 .5632 .4560 .8824 .7754 .6785 .5909 .9091 .8245 .7460 .6732 .6059
* 00 00 0* 0* *0 00 00 0* * 00 * 00 00 00

(1,5) .8014 .6768 .8937 .8248 .7616 .7055 .9274 .8800 .8372 .7969 .9449 .9071 .8760 .8451 .8153

.7984 .6697 .8918 .8213 .7577 .6979 .9261 .8776 .8335 .7920 .9439 .9069 .8733 .8414 .8107

(2,4) .6764 .4946 .8174 .7027 .6064 .5220 .8730 .7901 .7104 .6534 .9026 .8379 .7810 .7288 .6800

.6736 .4866 .8150 .6969 .6002 .5133 .8709 .7874 .7143 .6479 .9009 .8358 .7779 .7247 .6749

(3,3) .6081 .3978 .7704 .6248 .5084 .4118 .8379 .7291 .6375 .5574 .a747 .7883 .7136 .6466 5857

.6061 .3932 .7672 .6225 .5048 .4066 .8349 .7270 .6350 .5541 .8720 .7864 .7115 .6440 5825

(4,2) .5952 .3665 .7576 .5926 .4631 .3592 .8272 .7016 .5966 .5064 .8658 .7650 .6776 .6006 5315

1 .591 .3659 .7520 .5906 .4620 .35811 .8220 .6989 .5949 .5052 .8611 .7622 .6760 .59"2 5302

(5,1)1 .666 42 .8000 .6333 .4956 .5220 .8571 .7311 .6203 .5234 .8889 .7879 .6962 .6134 536
L2 0 0* * * 0 0
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